16 research outputs found

    Applications of real number theorem proving in PVS

    Get PDF
    This work is supported by funding from the EPSRC under grants EP/H500162, EP/F02309X and GR/S31242Real number theorem proving has many uses, particularly for verification of safety critical systems and systems for which design errors may be costly. We discuss a chain of developments building on real number theorem proving in PVS. This leads from the verification of aspects of an air traffic control system, through work on the integration of computer algebra and automated theorem proving to a new tool, NRV, first presented here that builds on the capabilities of Maple and PVS to provide a verified and automatic analysis of Nichols plots. This automates a standard technique used by control engineers and greatly improves assurance compared with the traditional method of visual inspection of the Nichols plots.Publisher PDFPeer reviewe

    Cohesin-Dependent Association of Scc2/4 with the Centromere Initiates Pericentromeric Cohesion Establishment

    Get PDF
    SummaryCohesin is a conserved ring-shaped multiprotein complex that participates in chromosome segregation, DNA repair, and transcriptional regulation [1, 2]. Cohesin loading onto chromosomes universally requires the Scc2/4 “loader” complex (also called NippedBL/Mau2), mutations in which cause the developmental disorder Cornelia de Lange syndrome in humans [1–9]. Cohesin is most concentrated in the pericentromere, the region surrounding the centromere [10–15]. Enriched pericentromeric cohesin requires the Ctf19 kinetochore subcomplex in budding yeast [16–18]. Here, we uncover the spatial and temporal determinants for Scc2/4 centromere association. We demonstrate that the critical role of the Ctf19 complex is to enable Scc2/4 association with centromeres, through which cohesin loads and spreads onto the adjacent pericentromere. We show that, unexpectedly, Scc2 association with centromeres depends on cohesin itself. The absence of the Scc1/Mcd1/Rad21 cohesin subunit precludes Scc2 association with centromeres from anaphase until late G1. Expression of SCC1 is both necessary and sufficient for the binding of cohesin to its loader, the association of Scc2 with centromeres, and cohesin loading. We propose that cohesin triggers its own loading by enabling Scc2/4 to connect with chromosomal landmarks, which at centromeres are specified by the Ctf19 complex. Overall, our findings provide a paradigm for the spatial and temporal control of cohesin loading

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    NaFe<sub>3</sub>(HPO<sub>3</sub>)<sub>2</sub>((H,F)PO<sub>2</sub>OH)<sub>6</sub>:a potential cathode material and a novel ferrimagnet

    Get PDF
    The authors thank the University of St Andrews and EPSRC (EP/K503162/1) for partial support of a studentship to I.M. The work was supported by the RFBR (grants 14-02-00245, 14-02-00111. The Russian team acknowledge support from the Ministry of Education and Science of the Russian Federation in the framework Increase Competitiveness Program of NUST «MISiS» (№ К4-2015-020 and К2-2015-075) and by Act 211 Government of the Russian Federation, contract(№ 02.A03.21.0006).A novel iron fluorophosphite, NaFe3(HPO3)2((H,F)PO2OH)6, was synthesized by a dry low-temperature synthesis route. The phase was shown to be electrochemically active for reversible insertion of Na+ ions, with an average discharge voltage of 2.5 V and an experimental capacity at low rates of up to 90 mAhg−1. Simple synthesis, low-cost materials, excellent capacity retention, and efficiency suggest this class of material is competitive with similar oxyanion-based compounds as a cathode material for Na batteries. The characterization of physical properties by means of magnetization, specific heat, and electron spin resonance measurements confirms the presence of two magnetically nonequivalent Fe3+ sites. The compound orders magnetically at TC ≈ 9.4 K into a state with spontaneous magnetization.PostprintPeer reviewe

    NaFe<sub>3</sub>(HPO<sub>3</sub>)<sub>2</sub>((H,F)PO<sub>2</sub>OH)<sub>6</sub>: A Potential Cathode Material and a Novel Ferrimagnet

    No full text
    A novel iron fluorophosphite, NaFe<sub>3</sub>(HPO<sub>3</sub>)<sub>2</sub>­((H,F)­PO<sub>2</sub>OH)<sub>6</sub>, was synthesized by a dry low-temperature synthesis route. The phase was shown to be electrochemically active for reversible insertion of Na<sup>+</sup> ions, with an average discharge voltage of 2.5 V and an experimental capacity at low rates of up to 90 mAhg<sup>−1</sup>. Simple synthesis, low-cost materials, excellent capacity retention, and efficiency suggest this class of material is competitive with similar oxyanion-based compounds as a cathode material for Na batteries. The characterization of physical properties by means of magnetization, specific heat, and electron spin resonance measurements confirms the presence of two magnetically nonequivalent Fe<sup>3+</sup> sites. The compound orders magnetically at <i>T</i><sub>C</sub> ≈ 9.4 K into a state with spontaneous magnetization
    corecore